MacPac
Game Programming

Assignment 3

Name: Stuart Bryson
Student #: 98082365

MacPac was written for assignment 3 of Game Programming at UTS. Building on
assignment 2, it has the following new features. Lua-bridge for debugging and game
scripting,

Features

Lua-bridge

Luaisalight weight scripting language that may companies are integrating into their
development pipeline and release of games. It was designed as an embeddable,
extensible, dynamic language that can easily expose data structures and objects from
within an application. Lua enables a quick and easy way to interface with complex run
time game logic. It isaso highly useful for debugging. There are many ways to interface
with Lua and another programming language such as C++.

As MacPac was written in Objective-C, it isvery easy to interface with Lua. Objective-C
Is binds messages to implementations at runtime, not compile or link time. All messages
sent between objects in Objective-C use the following function.

OBJC_EXPORT id objc_msgSend(id self, SEL op, ...);

The Objective-C runtime also makes the method signatures available. With this
understanding of the Objective-C runtime, we can write an interface such that all
Objective-C runtime messages are made available to Lua. We can now simply push
Objective-C objects onto the Lua stack and L ua can then manipulate these object at
runtime. In fact, we can even create new or sub class existing Objective-C classes all
from Lua. This enables fantastic game expandability in the future.

MacPac currently has limited application of this bridge, although no doubt will be
extended in future. When loaded, the game makes avail able the Controller class and the
Scene classto Lua. Thisway, absolutely every message of each of these classesis
available to Lua. Some examples of how to see thisin action follow.

MacPac aso provides a utilities.lua script which gets sourced when the game launches.
This utilities would be an ideal |ocation to store commonly used functions or game logic
that could in future be changed without requiring a recompilation.

Lastly, MacPac has a Lua console to provide a simple interface to the user to enter Lua
commands. Example commands that may be used in MacPac follow.

Lua Console

The Lua-bridge simply maps the Objective-C messages into an acceptable Lua syntax.
For example, the Objective-C message:

[scene setSize:5]

would trandate into the following Lua code:
Scene:setSize(5)

Other Lua commands that can be tried include:

Scene:spawnEnemy() -- remember there is only a maximum of 4 enemies
Scene:removeAllEnemies()

Scene:removeAl lPellets()

Scene:endGame()

Controller:toggleWireframe()
Controller:toggleDemo()

Feel free to have alook through the Scene and Controller header file to try some others.

Active Enemies

MacPac employs various techniques to enabl e active enemies that pursue the player and
kill them or the player in turn may pursue them. They bring the game a more active and
intelligent feel. Following is adiscussion of the features required to implement active
enemies.

A* Path Finding

In order to provide active enemies that pursue the player, some sort of path finding
algorithm needs to be employed. The A* algorithm has proven very popular asit isafast
and fairly accurate method to finding the best path from ato b. In fact, if we assume that
our heuristic in the search is admissible, that isit never overestimates its cost to the goal,
then we are guaranteed to find the shortest path in the best possible time.

MacPac employs the A* path finding algorithm and indeed uses an admissible heuristic.
For this reason, calculating the best path for each enemy to the player each frameis more
than feasible.

In order for A* to work, we need a set of interconnected nodes or points that can be used
to determine path. As MacPac is essentially agrid, it is easy to determine the points and
how they are connected. Currently, amaze is procedurally generated. During this

generation, we simply build up alist of points and alist of other points that a given point
IS connected to.

In order to test that the set of A* points have been generated correctly and also that our
chosen path has been correctly generated, it isimportant to be able to visualise what our
paths and their points ook like. For this reason there is an option to visualise the
generated interconnected path points. There is also arelatively minor adjustment to the
code to visualise an A* path. A path smply needsto be set in SBGLView and the path
will be drawn.

Finite State Machine

Another requirement for active enemiesisto implement a basic finite state machine. This
state machine will be responsible for controlling the states and behaviours of the enemies.

The states and behaviours of the enemies follow:

» Attacking. Thisisthe enemies default state. When the enemies are in their
attacking state, they employ A* path finding to pursue the player. Their speedis
dlightly faster than most other states and when they collide with the player they
will kill the player.

* Retreating. This state occurs when the player eats a retreating power
up. When in this state, the enemies turn sad and blue and they are ,
edible. That is, when the player collides with them, they will eat the %. A
enemy, the enemy will then dissapear and respawn at a later time. o

* Bouncing: This state occurs when the player eats a bouncing power up.

When in this state, the enemies are still dangerous and if the player

collides with one, the player will die. However, the enemies are not s
actively pursuing the player. Rather they enemies will bounce up and

down on the spot giving the player enough time to duck under them.

» Elevated: This state occurs when the player eats an elevated power up. -
This state is similar to the bouncing state in that the enemies are till ')
dangerous, however the enemies do not bounce, rather they are —
momentarily elevated so the player can easily move under them.

« Eating: This state occurs when the player eats an eating power up.

When in this state, the enemies will eat any pellets they collide with. D
This enables the player to finish the game (or level) much faster.

Unfortunately the player doesn’'t earn points for the pellets that the enemies
collide with.

All states other than the attacking state last for a certain amount of time and then return to
the attacking state. When returning to the attacking state, there is a nice blend between
the current and attacking state. For example, if the enemy isin the elevated state in the air
and they are then switched to the attacking state, they will start to descend from their
elevated position and at the same time, begin to pursue the player along their calculated
A* path.

All states are also only activated when there are spawned enemies in the scene.

Lights

MacPac implements basic per-vertex lighting. Thereis one directional light created when
the game launches. The game uses the built-in lights in openGL so therefore supports up
to 8 lights. There alight class for storing the light parameters, an rgb vector class for
storing the colours and applying colour calculations and the ability to add multiple lights
to the scene.

Not only are there basic static lights, but MacPac supports different lighting effects too.
The effects can be seen when the player eats the various different power ups. Each power
up has its own strobe of colour. When eaten, these colours will strobe back and forth
indicating that there are some enemies in the scene that are in this state.

Not all the enemies necessarily will be in this state though. Some may have spawned after
the power up was eaten.

Sounds

MacPac employs basic sounds to provide a more immersive experience for the user. It
provides audible feedback for when different pellets, powerup or enemies are eaten, for
when enemies spawn, and for when the player dies or the game finishes.

Game Play
Lastly, MacPac implements some basic game play features. These features include:

* A counter of remaining lives that the player has. The player begins with 3 lives at
the start of the game and will be deducted alife when they collide with an
attacking enemy. The number of remaining livesis visible on screen.

» A score. Each time apellet is eaten, the player gains 5 points. Each time a
retreating enemy is eaten, the player gains 20 points. The number of points gained
isvisible on screen.

	MacPac
	Game Programming
	Assignment 3
	Features
	Lua-bridge
	Lua Console
	Active Enemies
	A* Path Finding
	Finite State Machine
	Lights
	Sounds
	Game Play

